Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method
نویسندگان
چکیده
Ž . This study presents a computational method combining smoothed particle hydrodynamics SPH and the discrete element method Ž . DEM to model flows containing a viscous fluid and macroscopic solid particles. The two-dimensional numerical simulations are validated by comparing the wake size, drag coefficient and local heat transfer for flow past a circular cylinder at Reynolds numbers near 100. The central focus of the work, however, is in computing flows of liquid–solid mixtures, such as the classic shear-cell experiments of Bagnold. Hence, the simulations were performed for neutrally buoyant particles contained between two plates for different solid fractions, fluid viscosities and shear rates. The tangential force resulting from the presence of particles shows an increasing dependence on the shear rate as observed in the Bagnold experiments. The normal force shows large variations with time, whose source is presently unclear but independent of the direct collisions between particles and the walls. q 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Simulation of solid-liquid flows using a two-way coupled smoothed particle hydrodynamics-discrete element method model
−We introduce a coupled smoothed particle hydrodynamics-discrete element method (SPH-DEM) to describe the two-way interaction between the two phases of a solid-liquid flow. To validate the model, we simulated two test problems: a solid-liquid counter-flow in a periodic box and particle settlement. The simulations correctly predicted the dynamics, and the results showed good agreement with the t...
متن کاملIncompressible smoothed particle hydrodynamics simulations on free surface flows
The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH). In the current ISPH method, the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...
متن کاملThe Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows
This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined, free-surface, microscopic), and scal...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملSimulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)
Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...
متن کامل